Monochromatic-degree conditions for properly colored cycles in edge-colored complete graphs
Let G be an edge-colored graph and v be a vertex of G. Define the monochromatic-degree dmon(v) of v to be the maximum number of edges with the same color incident with v in G, and the maximum monochromatic-degree Δmon(G) of G to be the maximum value of dmon(v) over all vertices v of G. A cycle (path...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-01, Vol.346 (1), p.113197, Article 113197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be an edge-colored graph and v be a vertex of G. Define the monochromatic-degree dmon(v) of v to be the maximum number of edges with the same color incident with v in G, and the maximum monochromatic-degree Δmon(G) of G to be the maximum value of dmon(v) over all vertices v of G. A cycle (path) in G is called properly colored if any two adjacent edges of the cycle (path) have distinct colors. Wang et al. in 2014 showed that an edge-colored complete graph Knc with Δmon(Knc) |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2022.113197 |