Monochromatic-degree conditions for properly colored cycles in edge-colored complete graphs

Let G be an edge-colored graph and v be a vertex of G. Define the monochromatic-degree dmon(v) of v to be the maximum number of edges with the same color incident with v in G, and the maximum monochromatic-degree Δmon(G) of G to be the maximum value of dmon(v) over all vertices v of G. A cycle (path...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2023-01, Vol.346 (1), p.113197, Article 113197
Hauptverfasser: Chen, Xiaozheng, Li, Xueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be an edge-colored graph and v be a vertex of G. Define the monochromatic-degree dmon(v) of v to be the maximum number of edges with the same color incident with v in G, and the maximum monochromatic-degree Δmon(G) of G to be the maximum value of dmon(v) over all vertices v of G. A cycle (path) in G is called properly colored if any two adjacent edges of the cycle (path) have distinct colors. Wang et al. in 2014 showed that an edge-colored complete graph Knc with Δmon(Knc)
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2022.113197