Enumeration of chordal planar graphs and maps
We determine the number of labelled chordal planar graphs with n vertices, which is asymptotically g⋅n−5/2γnn! for a constant g>0 and γ≈11.89235. We also determine the number of rooted simple chordal planar maps with n edges, which is asymptotically s⋅n−3/2δn, where s>0, δ=1/σ≈6.40375, and σ i...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-01, Vol.346 (1), p.113163, Article 113163 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine the number of labelled chordal planar graphs with n vertices, which is asymptotically g⋅n−5/2γnn! for a constant g>0 and γ≈11.89235. We also determine the number of rooted simple chordal planar maps with n edges, which is asymptotically s⋅n−3/2δn, where s>0, δ=1/σ≈6.40375, and σ is an algebraic number of degree 12. The proofs are based on combinatorial decompositions and singularity analysis. Chordal planar graphs (or maps) are a natural example of a subcritical class of graphs in which the class of 3-connected graphs is relatively rich. The 3-connected members are precisely chordal triangulations, those obtained starting from K4 by repeatedly adding vertices adjacent to an existing triangular face. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2022.113163 |