Spectral radius and the 2-power of Hamilton cycle
For a graph G on n⩾18 vertices and e(G) edges that does not contain the 2-power of a Hamilton cycle Cn2, we identify all the graphs G with e(G)=ex(n,Cn2)−1 and e(G)=ex(n,Cn2)−2, respectively, where ex(n,Cn2) is the Turán number of Cn2. This extends the result of Khan and Yuan [Discrete Math. 345 (20...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-01, Vol.346 (1), p.113155, Article 113155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph G on n⩾18 vertices and e(G) edges that does not contain the 2-power of a Hamilton cycle Cn2, we identify all the graphs G with e(G)=ex(n,Cn2)−1 and e(G)=ex(n,Cn2)−2, respectively, where ex(n,Cn2) is the Turán number of Cn2. This extends the result of Khan and Yuan [Discrete Math. 345 (2022) 112908.]. Using this result, we establish a spectral condition for a graph containing Cn2. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2022.113155 |