Anti-Ramsey numbers for vertex-disjoint triangles
An edge-colored graph is called rainbow if all the colors on its edges are distinct. Given a positive integer n and a graph G, the anti-Ramsey number ar(n,G) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of G. Denote by kC3 the union of k vertex-disjoint copies of C3...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-01, Vol.346 (1), p.113123, Article 113123 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An edge-colored graph is called rainbow if all the colors on its edges are distinct. Given a positive integer n and a graph G, the anti-Ramsey number ar(n,G) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of G. Denote by kC3 the union of k vertex-disjoint copies of C3. In this paper, we determine the anti-Ramsey number ar(n,kC3) for n=3k and n≥2k2−k+2, respectively. When 3k≤n≤2k2−k+2, we give lower and upper bounds for ar(n,kC3). |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2022.113123 |