Anti-Ramsey numbers for vertex-disjoint triangles

An edge-colored graph is called rainbow if all the colors on its edges are distinct. Given a positive integer n and a graph G, the anti-Ramsey number ar(n,G) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of G. Denote by kC3 the union of k vertex-disjoint copies of C3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2023-01, Vol.346 (1), p.113123, Article 113123
Hauptverfasser: Wu, Fangfang, Zhang, Shenggui, Li, Binlong, Xiao, Jimeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An edge-colored graph is called rainbow if all the colors on its edges are distinct. Given a positive integer n and a graph G, the anti-Ramsey number ar(n,G) is the maximum number of colors in an edge-coloring of Kn with no rainbow copy of G. Denote by kC3 the union of k vertex-disjoint copies of C3. In this paper, we determine the anti-Ramsey number ar(n,kC3) for n=3k and n≥2k2−k+2, respectively. When 3k≤n≤2k2−k+2, we give lower and upper bounds for ar(n,kC3).
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2022.113123