The peak and descent statistics over ballot permutations
A ballot permutation is a permutation π such that in any prefix of π the descent number is not more than the ascent number. By using a reversal-concatenation map, we (i) give a formula for the joint distribution (pk, des) of the peak and descent statistics over ballot permutations, (ii) connect this...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2022-03, Vol.345 (3), p.112739, Article 112739 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A ballot permutation is a permutation π such that in any prefix of π the descent number is not more than the ascent number. By using a reversal-concatenation map, we (i) give a formula for the joint distribution (pk, des) of the peak and descent statistics over ballot permutations, (ii) connect this distribution and the joint distribution (pk, des) over ordinary permutations in terms of generating functions, and (iii) confirm Spiro's conjecture which finds the equidistribution of the descent statistic for ballot permutations and an analogue of the descent statistic for odd order permutations. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112739 |