The peak and descent statistics over ballot permutations

A ballot permutation is a permutation π such that in any prefix of π the descent number is not more than the ascent number. By using a reversal-concatenation map, we (i) give a formula for the joint distribution (pk, des) of the peak and descent statistics over ballot permutations, (ii) connect this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2022-03, Vol.345 (3), p.112739, Article 112739
Hauptverfasser: Wang, David G.L., Zhao, Tongyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A ballot permutation is a permutation π such that in any prefix of π the descent number is not more than the ascent number. By using a reversal-concatenation map, we (i) give a formula for the joint distribution (pk, des) of the peak and descent statistics over ballot permutations, (ii) connect this distribution and the joint distribution (pk, des) over ordinary permutations in terms of generating functions, and (iii) confirm Spiro's conjecture which finds the equidistribution of the descent statistic for ballot permutations and an analogue of the descent statistic for odd order permutations.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2021.112739