On WL-rank of Deza Cayley graphs
The WL-rank of a graph Γ is defined to be the rank of the coherent configuration of Γ. We construct a new infinite family of strictly Deza Cayley graphs for which the WL-rank is equal to the number of vertices. The graphs from this family are divisible design and integral.
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2022-02, Vol.345 (2), p.112692, Article 112692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The WL-rank of a graph Γ is defined to be the rank of the coherent configuration of Γ. We construct a new infinite family of strictly Deza Cayley graphs for which the WL-rank is equal to the number of vertices. The graphs from this family are divisible design and integral. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112692 |