On WL-rank of Deza Cayley graphs

The WL-rank of a graph Γ is defined to be the rank of the coherent configuration of Γ. We construct a new infinite family of strictly Deza Cayley graphs for which the WL-rank is equal to the number of vertices. The graphs from this family are divisible design and integral.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2022-02, Vol.345 (2), p.112692, Article 112692
Hauptverfasser: Churikov, Dmitry, Ryabov, Grigory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The WL-rank of a graph Γ is defined to be the rank of the coherent configuration of Γ. We construct a new infinite family of strictly Deza Cayley graphs for which the WL-rank is equal to the number of vertices. The graphs from this family are divisible design and integral.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2021.112692