Generalized rainbow Turán numbers of odd cycles
Given graphs F and H, the generalized rainbow Turán numberex(n,F,rainbow-H) is the maximum number of copies of F in an n-vertex graph with a proper edge-coloring that contains no rainbow copy of H. B. Janzer determined the order of magnitude of ex(n,Cs,rainbow-Ct) for all s≥4 and t≥3, and a recent r...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2022-02, Vol.345 (2), p.112663, Article 112663 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given graphs F and H, the generalized rainbow Turán numberex(n,F,rainbow-H) is the maximum number of copies of F in an n-vertex graph with a proper edge-coloring that contains no rainbow copy of H. B. Janzer determined the order of magnitude of ex(n,Cs,rainbow-Ct) for all s≥4 and t≥3, and a recent result of O. Janzer implied that ex(n,C3,rainbow-C2k)=O(n1+1/k). We prove the corresponding upper bound for the remaining cases, showing that ex(n,C3,rainbow-C2k+1)=O(n1+1/k). This matches the known lower bound for k even and is conjectured to be tight for k odd. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112663 |