On the weak 2-coloring number of planar graphs

For a graph G=(V,E), a total ordering L on V, and a vertex v∈V, let Wcol2[G,L,v] be the set of vertices w∈V for which there is a path from v to w whose length is 0, 1 or 2 and whose L-least vertex is w. The weak 2-coloring number wcol2(G) of G is the least k such that there is a total ordering L on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2022-01, Vol.345 (1), p.112631, Article 112631
Hauptverfasser: Almulhim, Ahlam, Kierstead, H.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a graph G=(V,E), a total ordering L on V, and a vertex v∈V, let Wcol2[G,L,v] be the set of vertices w∈V for which there is a path from v to w whose length is 0, 1 or 2 and whose L-least vertex is w. The weak 2-coloring number wcol2(G) of G is the least k such that there is a total ordering L on V with |Wcol2[G,L,v]|≤k for all vertices v∈V. We improve the known upper bound on the weak 2-coloring number of planar graphs from 28 to 23. As the weak 2-coloring number is the best known upper bound on the star list chromatic number of planar graphs, this bound is also improved.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2021.112631