Relative Turán numbers for hypergraph cycles
For an r-uniform hypergraph H and a family of r-uniform hypergraphs F, the relative Turán number ex(H,F) is the maximum number of edges in an F-free subgraph of H. In this paper we give lower bounds on ex(H,F) for certain families of hypergraph cycles F such as Berge cycles and loose cycles. In part...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2021-10, Vol.344 (10), p.112542, Article 112542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an r-uniform hypergraph H and a family of r-uniform hypergraphs F, the relative Turán number ex(H,F) is the maximum number of edges in an F-free subgraph of H. In this paper we give lower bounds on ex(H,F) for certain families of hypergraph cycles F such as Berge cycles and loose cycles. In particular, if Cℓ3 denotes the set of all 3-uniform Berge ℓ-cycles and H is a 3-uniform hypergraph with maximum degree Δ, we proveex(H,C43)≥Δ−3/4−o(1)e(H),ex(H,C53)≥Δ−3/4−o(1)e(H), and these bounds are tight up to the o(1) term. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112542 |