The cost of 2-distinguishing hypercubes

A graph G is said to be 2-distinguishable if there is a labeling of the vertices with two labels so that only the trivial automorphism preserves the labels. The minimum size of a label class, over all 2-distinguishing labelings, is called the cost of 2-distinguishing, denoted by ρ(G). For n≥4 the hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2021-09, Vol.344 (9), p.112512, Article 112512
1. Verfasser: Boutin, Debra L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G is said to be 2-distinguishable if there is a labeling of the vertices with two labels so that only the trivial automorphism preserves the labels. The minimum size of a label class, over all 2-distinguishing labelings, is called the cost of 2-distinguishing, denoted by ρ(G). For n≥4 the hypercubes Qn are 2-distinguishable, but the values for ρ(Qn) have been elusive, with only bounds and partial results previously known. This paper settles the question. The main result can be summarized as: for n≥4, ρ(Qn)∈{1+⌈log2⁡n⌉,2+⌈log2⁡n⌉}. Exact values are found using a recursive relationship involving a new parameter νm, the smallest integer for which ρ(Qνm)=m. The main result is4≤n≤12⟹ρ(Qn)=5, and 5≤m≤11⟹νm=4; for m≥6,ρ(Qn)=m⇔2m−2−νm−1+1≤n≤2m−1−νm; for n≥5,νm=n⇔2n−1−ρ(Qn−1)+1≤m≤2n−ρ(Qn).
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2021.112512