Explicit Δ-edge-coloring of consecutive levels in a divisor lattice
We show that the explicit 1-factorizations of the middle levels in a Boolean lattice, defined by Duffus et al. (1994) [2], and by Kierstead and Trotter (1988) [7], can both be generalized in a simple way to define explicit Δ-edge-colorings of any two consecutive levels in any divisor lattice.
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2021-08, Vol.344 (8), p.112485, Article 112485 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the explicit 1-factorizations of the middle levels in a Boolean lattice, defined by Duffus et al. (1994) [2], and by Kierstead and Trotter (1988) [7], can both be generalized in a simple way to define explicit Δ-edge-colorings of any two consecutive levels in any divisor lattice. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112485 |