On the Ramsey numbers for the tree graphs versus certain generalised wheel graphs
Given two simple graphs G and H, the Ramsey number R(G,H) is the smallest integer n such that for any graph of order n, either it contains G or its complement contains H. Let Tn be a tree graph of order n and Ws,m be the generalised wheel graph Ks+Cm. In this paper, we show that for n≥5,s≥2, R(Tn,Ws...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2021-08, Vol.344 (8), p.112440, Article 112440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given two simple graphs G and H, the Ramsey number R(G,H) is the smallest integer n such that for any graph of order n, either it contains G or its complement contains H. Let Tn be a tree graph of order n and Ws,m be the generalised wheel graph Ks+Cm. In this paper, we show that for n≥5,s≥2, R(Tn,Ws,6)=(s+1)(n−1)+1 and for n≥5,s≥1, R(Tn,Ws,7)=(s+2)(n−1)+1. We also determine the exact value of R(Tn,Ws,m) for large n and s. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112440 |