On the Ramsey numbers for the tree graphs versus certain generalised wheel graphs

Given two simple graphs G and H, the Ramsey number R(G,H) is the smallest integer n such that for any graph of order n, either it contains G or its complement contains H. Let Tn be a tree graph of order n and Ws,m be the generalised wheel graph Ks+Cm. In this paper, we show that for n≥5,s≥2, R(Tn,Ws...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2021-08, Vol.344 (8), p.112440, Article 112440
Hauptverfasser: Chng, Zhi Yee, Tan, Ta Sheng, Wong, Kok Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given two simple graphs G and H, the Ramsey number R(G,H) is the smallest integer n such that for any graph of order n, either it contains G or its complement contains H. Let Tn be a tree graph of order n and Ws,m be the generalised wheel graph Ks+Cm. In this paper, we show that for n≥5,s≥2, R(Tn,Ws,6)=(s+1)(n−1)+1 and for n≥5,s≥1, R(Tn,Ws,7)=(s+2)(n−1)+1. We also determine the exact value of R(Tn,Ws,m) for large n and s.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2021.112440