A shuffling theorem for reflectively symmetric tilings

The author and Rohatgi recently proved a ‘shuffling theorem’ for doubly-dented hexagons. In particular, they showed that shuffling removed unit triangles along a horizontal axis in a hexagon changes the tiling number by only a simple multiplicative factor. In this paper, we consider a similar phenom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2021-07, Vol.344 (7), p.112390, Article 112390
1. Verfasser: Lai, Tri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The author and Rohatgi recently proved a ‘shuffling theorem’ for doubly-dented hexagons. In particular, they showed that shuffling removed unit triangles along a horizontal axis in a hexagon changes the tiling number by only a simple multiplicative factor. In this paper, we consider a similar phenomenon for a symmetry class of tilings, namely, the reflectively symmetric tilings. We also prove several shuffling theorems for halved hexagons.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2021.112390