A shuffling theorem for reflectively symmetric tilings
The author and Rohatgi recently proved a ‘shuffling theorem’ for doubly-dented hexagons. In particular, they showed that shuffling removed unit triangles along a horizontal axis in a hexagon changes the tiling number by only a simple multiplicative factor. In this paper, we consider a similar phenom...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2021-07, Vol.344 (7), p.112390, Article 112390 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The author and Rohatgi recently proved a ‘shuffling theorem’ for doubly-dented hexagons. In particular, they showed that shuffling removed unit triangles along a horizontal axis in a hexagon changes the tiling number by only a simple multiplicative factor. In this paper, we consider a similar phenomenon for a symmetry class of tilings, namely, the reflectively symmetric tilings. We also prove several shuffling theorems for halved hexagons. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2021.112390 |