On (s,t)-supereulerian graphs with linear degree bounds
For integers s≥0 and t≥0, a graph G is (s,t)-supereulerian if for any disjoint edge sets X,Y⊆E(G) with |X|≤s and |Y|≤t, G has a spanning closed trail that contains X and avoids Y. Pulleyblank in [J. Graph Theory, 3 (1979) 309-310] showed that determining whether a graph is (0,0)-supereulerian, even...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2021-03, Vol.344 (3), p.112239, Article 112239 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For integers s≥0 and t≥0, a graph G is (s,t)-supereulerian if for any disjoint edge sets X,Y⊆E(G) with |X|≤s and |Y|≤t, G has a spanning closed trail that contains X and avoids Y. Pulleyblank in [J. Graph Theory, 3 (1979) 309-310] showed that determining whether a graph is (0,0)-supereulerian, even when restricted to planar graphs, is NP-complete. Settling an open problem of Bauer, Catlin in [J. Graph Theory, 12 (1988) 29–45] showed that every simple graph G on n vertices with δ(G)≥n5−1, when n is sufficiently large, is (0,0)-supereulerian or is contractible to K2,3. We prove the following for any nonnegative integers s and t.
(i) For any real numbers a and b with 0 |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2020.112239 |