On quasi-strongly regular graphs with parameters (n,k,a;k−1,c2)

Quasi-strongly regular graphs are a combinatorial generalization of strongly regular graphs. A quasi-strongly regular graph of grade 2 with parameters (n,k,a;c1,c2) is a k-regular graph on n vertices such that any two adjacent vertices have a common neighbours, any two non-adjacent vertices have c1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2021-03, Vol.344 (3), p.112237, Article 112237
Hauptverfasser: Xie, Jiayi, Jia, Dongdong, Zhang, Gengsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quasi-strongly regular graphs are a combinatorial generalization of strongly regular graphs. A quasi-strongly regular graph of grade 2 with parameters (n,k,a;c1,c2) is a k-regular graph on n vertices such that any two adjacent vertices have a common neighbours, any two non-adjacent vertices have c1 or c2 common neighbours, and for each ci(i=1,2), there exists a pair of non-adjacent vertices sharing ci common neighbours. If a quasi-strongly regular graph of grade 2 is neither a strongly regular graph nor a Deza graph, then it is called a strictly quasi-strongly regular graph. In this paper, we characterize strictly quasi-strongly regular graphs with parameters satisfying c1=k−1.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2020.112237