A general bridge theorem for self-avoiding walks
Let X be an infinite, locally finite, connected, quasi-transitive graph without loops or multiple edges. A graph height function on X is a map adapted to the graph structure, assigning to every vertex an integer, called height. Bridges are self-avoiding walks such that heights of interior vertices a...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2020-12, Vol.343 (12), p.112092, Article 112092 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be an infinite, locally finite, connected, quasi-transitive graph without loops or multiple edges. A graph height function on X is a map adapted to the graph structure, assigning to every vertex an integer, called height. Bridges are self-avoiding walks such that heights of interior vertices are bounded by the heights of the start- and end-vertex. The number of self-avoiding walks and the number of bridges of length n starting at a vertex o of X grow exponentially in n and the bases of these growth rates are called connective constant and bridge constant, respectively. We show that for any graph height function h the connective constant of the graph is equal to the maximum of the two bridge constants given by increasing and decreasing bridges with respect to h. As a concrete example, we apply this result to calculate the connective constant of the Grandparent graph. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2020.112092 |