Zero-sum flows for Steiner systems
Given a t-(v,k,λ) design, D=(X,B), a zero-sum n-flow of D is a map f:B⟶{±1,…,±(n−1)} such that for any point x∈X, the sum of f over all blocks incident with x is zero. For a positive integer k, we find a zero-sum k-flow for an STS(uw) and for an STS(2v+7) for v≡1(mod4), if there are STS(u), STS(w) a...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2020-11, Vol.343 (11), p.112074, Article 112074 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a t-(v,k,λ) design, D=(X,B), a zero-sum n-flow of D is a map f:B⟶{±1,…,±(n−1)} such that for any point x∈X, the sum of f over all blocks incident with x is zero. For a positive integer k, we find a zero-sum k-flow for an STS(uw) and for an STS(2v+7) for v≡1(mod4), if there are STS(u), STS(w) and STS(v) such that the STS(u) and STS(v) both have a zero-sum k-flow. In 2015, it was conjectured that for v>7 every STS(v) admits a zero-sum 3-flow. Here, it is shown that many cyclic STS(v) have a zero-sum 3-flow. Also, we investigate the existence of zero-sum flows for some Steiner quadruple systems. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2020.112074 |