Most binary matrices have no small defining set
Consider a matrix M chosen uniformly at random from a class of m×n matrices of zeros and ones with prescribed row and column sums. A partially filled matrix D is a defining set for M if M is the unique member of its class that contains the entries in D. The size of a defining set is the number of fi...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2020-10, Vol.343 (10), p.112035, Article 112035 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a matrix M chosen uniformly at random from a class of m×n matrices of zeros and ones with prescribed row and column sums. A partially filled matrix D is a defining set for M if M is the unique member of its class that contains the entries in D. The size of a defining set is the number of filled entries. A critical set is a defining set for which the removal of any entry stops it being a defining set.
For some small fixed ε>0, we assume that n⩽m=o(n1+ε), and that λ⩽1∕2, where λ is the proportion of entries of M that equal 1. We also assume that the row sums of M do not vary by more than O(n1∕2+ε), and that the column sums do not vary by more than O(m1∕2+ε). Under these assumptions we show that M almost surely has no defining set of size less than λmn−O(m7∕4+ε). It follows that M almost surely has no critical set of size more than (1−λ)mn+O(m7∕4+ε). Our results generalise a theorem of Cavenagh and Ramadurai, who examined the case when λ=1∕2 and n=m=2k for an integer k. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2020.112035 |