Extending partial isometries of antipodal graphs
We prove EPPA (extension property for partial automorphisms) for all antipodal classes from Cherlin’s list of metrically homogeneous graphs, thereby answering a question of Aranda et al. This paper should be seen as the first application of a new general method for proving EPPA which can bypass the...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2020-01, Vol.343 (1), p.111633, Article 111633 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove EPPA (extension property for partial automorphisms) for all antipodal classes from Cherlin’s list of metrically homogeneous graphs, thereby answering a question of Aranda et al. This paper should be seen as the first application of a new general method for proving EPPA which can bypass the lack of automorphism-preserving completions. It is done by combining the recent strengthening of the Herwig–Lascar theorem by Hubička, Nešetřil and the author with the ideas of the proof of EPPA for two-graphs by Evans et al. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2019.111633 |