Extending partial isometries of antipodal graphs

We prove EPPA (extension property for partial automorphisms) for all antipodal classes from Cherlin’s list of metrically homogeneous graphs, thereby answering a question of Aranda et al. This paper should be seen as the first application of a new general method for proving EPPA which can bypass the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2020-01, Vol.343 (1), p.111633, Article 111633
1. Verfasser: Konečný, Matěj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove EPPA (extension property for partial automorphisms) for all antipodal classes from Cherlin’s list of metrically homogeneous graphs, thereby answering a question of Aranda et al. This paper should be seen as the first application of a new general method for proving EPPA which can bypass the lack of automorphism-preserving completions. It is done by combining the recent strengthening of the Herwig–Lascar theorem by Hubička, Nešetřil and the author with the ideas of the proof of EPPA for two-graphs by Evans et al.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2019.111633