Universal graphs omitting finitely many finite graphs

If F is a family of graphs, then a graph is F-free, if it contains no induced subgraph isomorphic to an element of F. If F is a finite set of finite graphs, λ is an infinite cardinal, we let CF(F,λ) be the minimal number of F-free graphs of size λ such that each F-free graph of size λ embeds into so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2019-12, Vol.342 (12), p.111596, Article 111596
Hauptverfasser: Komjáth, Péter, Shelah, Saharon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If F is a family of graphs, then a graph is F-free, if it contains no induced subgraph isomorphic to an element of F. If F is a finite set of finite graphs, λ is an infinite cardinal, we let CF(F,λ) be the minimal number of F-free graphs of size λ such that each F-free graph of size λ embeds into some of them. We show that if 2
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2019.111596