Universal graphs omitting finitely many finite graphs
If F is a family of graphs, then a graph is F-free, if it contains no induced subgraph isomorphic to an element of F. If F is a finite set of finite graphs, λ is an infinite cardinal, we let CF(F,λ) be the minimal number of F-free graphs of size λ such that each F-free graph of size λ embeds into so...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2019-12, Vol.342 (12), p.111596, Article 111596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If F is a family of graphs, then a graph is F-free, if it contains no induced subgraph isomorphic to an element of F. If F is a finite set of finite graphs, λ is an infinite cardinal, we let CF(F,λ) be the minimal number of F-free graphs of size λ such that each F-free graph of size λ embeds into some of them. We show that if 2 |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2019.111596 |