Logarithmic Cartan geometry on complex manifolds with trivial logarithmic tangent bundle
Let M be a compact complex manifold, and D⊂M a reduced normal crossing divisor on it, such that the logarithmic tangent bundle TM(−logD) is holomorphically trivial. Let A denote the maximal connected subgroup of the group of all holomorphic automorphisms of M that preserve the divisor D. Take a hol...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2024-12, Vol.97, p.102213, Article 102213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a compact complex manifold, and D⊂M a reduced normal crossing divisor on it, such that the logarithmic tangent bundle TM(−logD) is holomorphically trivial. Let A denote the maximal connected subgroup of the group of all holomorphic automorphisms of M that preserve the divisor D. Take a holomorphic Cartan geometry (EH,Θ) of type (G,H) on M, where H⊂G are complex Lie groups. We prove that (EH,Θ) is isomorphic to (ρ⁎EH,ρ⁎Θ) for every ρ∈A if and only if the principal H–bundle EH admits a logarithmic connection Δ singular on D such that Θ is preserved by the connection Δ. |
---|---|
ISSN: | 0926-2245 |
DOI: | 10.1016/j.difgeo.2024.102213 |