Logarithmic Cartan geometry on complex manifolds with trivial logarithmic tangent bundle

Let M be a compact complex manifold, and D⊂M a reduced normal crossing divisor on it, such that the logarithmic tangent bundle TM(−log⁡D) is holomorphically trivial. Let A denote the maximal connected subgroup of the group of all holomorphic automorphisms of M that preserve the divisor D. Take a hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2024-12, Vol.97, p.102213, Article 102213
Hauptverfasser: Biswas, Indranil, Dumitrescu, Sorin, Morye, Archana S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a compact complex manifold, and D⊂M a reduced normal crossing divisor on it, such that the logarithmic tangent bundle TM(−log⁡D) is holomorphically trivial. Let A denote the maximal connected subgroup of the group of all holomorphic automorphisms of M that preserve the divisor D. Take a holomorphic Cartan geometry (EH,Θ) of type (G,H) on M, where H⊂G are complex Lie groups. We prove that (EH,Θ) is isomorphic to (ρ⁎EH,ρ⁎Θ) for every ρ∈A if and only if the principal H–bundle EH admits a logarithmic connection Δ singular on D such that Θ is preserved by the connection Δ.
ISSN:0926-2245
DOI:10.1016/j.difgeo.2024.102213