Variational Bayesian inference for network autoregression models

We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the network autoregression framework. The VB approach allows for the automatic identification of the dynamic structure of such a model and obtains a direct approximation of the posterior density. Com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2022-05, Vol.169, p.107406, Article 107406
Hauptverfasser: Lai, Wei-Ting, Chen, Ray-Bing, Chen, Ying, Koch, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the network autoregression framework. The VB approach allows for the automatic identification of the dynamic structure of such a model and obtains a direct approximation of the posterior density. Compared to the Markov chain Monte Carlo (MCMC)-based sampling approaches, the VB approach achieves enhanced computational efficiency without sacrificing estimation accuracy. In a real data analysis scenario of day-ahead natural gas flow prediction in the German gas transmission network with 51 nodes between October 2013 and September 2015, the VB approach delivers promising forecasting accuracy along with clearly detected structures in terms of dynamic dependence.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2021.107406