Hierarchical Bayesian modeling of spatio-temporal area-interaction processes

To model spatial point patterns with discrete time stamps a flexible spatio-temporal area-interaction point process is proposed. In particular, this model is suitable for describing the dependency between point patterns over time, when the new point pattern arises from the previous point pattern. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2022-03, Vol.167, p.107349, Article 107349
Hauptverfasser: Chen, Jiaxun, Micheas, Athanasios C., Holan, Scott H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To model spatial point patterns with discrete time stamps a flexible spatio-temporal area-interaction point process is proposed. In particular, this model is suitable for describing the dependency between point patterns over time, when the new point pattern arises from the previous point pattern. A hierarchical model is also implemented in order to incorporate the underlying evolution process of the model parameters. For parameter estimation, a double Metropolis-Hastings within Gibbs sampler is used. The performance of the estimation algorithm is evaluated through a simulation study. Finally, the point pattern forecasting procedure is demonstrated through a simulation study and an application to United States natural caused wildfire data from 2002 to 2019.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2021.107349