Generalized accelerated hazards mixture cure models with interval-censored data

Existing semiparametric mixture cure models with interval-censored data often assume a survival model, such as the Cox proportional hazards model, proportional odds model, accelerated failure time model, or their transformations for the susceptible subjects. There are cases in practice that such con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2021-09, Vol.161, p.107248, Article 107248
Hauptverfasser: Liu, Xiaoyu, Xiang, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing semiparametric mixture cure models with interval-censored data often assume a survival model, such as the Cox proportional hazards model, proportional odds model, accelerated failure time model, or their transformations for the susceptible subjects. There are cases in practice that such conventional assumptions may be inappropriate for modeling survival outcomes of susceptible subjects. We propose a more flexible class of generalized accelerated hazards mixture cure models for analysis of interval-censored failure times in the presence of a cure fraction. We develop a sieve maximum likelihood estimation in which the unknown cumulative baseline hazard function is approximated by means of B-splines and bundled with regression parameters. The proposed estimator possesses the properties of consistency and asymptotic normality, and can achieve the optimal global convergence rate under some conditions. Simulation results demonstrate that the proposed estimator performs satisfactorily in finite samples. The application of the proposed method is illustrated by the analysis of smoking cessation data from a lung health study.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2021.107248