Model detection and estimation for varying coefficient panel data models with fixed effects

In this paper, we study the model detection and estimation for varying coefficient panel data models with fixed effects. We first propose a data transformation approach to eliminate fixed effects. Then, using the basis function approximations and the group SCAD penalty, we develop a combined penaliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2020-12, Vol.152, p.107054, Article 107054
Hauptverfasser: Feng, Sanying, He, Wenqi, Li, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the model detection and estimation for varying coefficient panel data models with fixed effects. We first propose a data transformation approach to eliminate fixed effects. Then, using the basis function approximations and the group SCAD penalty, we develop a combined penalization procedure to select the significant covariates, detect the true structure of the model, i.e., identify the nonzero constant coefficients and the varying coefficients, and estimate the unknown regression coefficients simultaneously. Under some mild conditions, we show that the proposed procedure can identify the true model structure consistently, and the penalized estimators have the oracle properties. At last, we illustrate the finite sample performance of the proposed methods with some simulation studies and a real data application.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2020.107054