Electrochemical behaviour of temperature-based bismuth phosphate nanostructures for energy storage application

[Display omitted] •BiPO4 nanostructures were successfully synthesized via the facile Microwave technique.•XRD and Raman analysis confirmed the phase and structure of the material depending on temperature.•FESEM analysis revealed the variation in morphology with temperature enhancement and planes, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical physics letters 2022-10, Vol.804, p.139898, Article 139898
Hauptverfasser: Joshi, Aman, Saini, Sunaina, Chand, Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •BiPO4 nanostructures were successfully synthesized via the facile Microwave technique.•XRD and Raman analysis confirmed the phase and structure of the material depending on temperature.•FESEM analysis revealed the variation in morphology with temperature enhancement and planes, respectively.•Reaction temperatures are essential in optimizing the electrochemical behaviour of BiPO4 nanostructures.•BP140 exhibits a maximum specific capacity of 497 Cg−1, with ∼71 % retention for 5000 cycles at 30 Ag−1. The current study described a simple and quick synthesis procedure of BiPO4nanostructuresat varioustemperatures. According to XRD and Raman spectroscopy, the produced samples contain a hexagonal phase with no impurity. A field emission scanning electron microscope (FESEM) was used to identify the development of non-uniform rectangular and hexagonal nanoparticles. The electrochemical properties of the fabricated electrodes were examined usingGalvanostatic charge-discharge (GCD), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS). The BP140 electrode showed the specific capacity of 497 Cg−1at 2 Ag−1and better cycle constancy, i.e., 71 percent at 30 Ag−1over 5000 cycles.
ISSN:0009-2614
1873-4448
DOI:10.1016/j.cplett.2022.139898