A GPU-parallelized interpolation-based fast multipole method for the relativistic space-charge field calculation
The fast multipole method (FMM) has received growing attention in the beam physics simulation. In this study, we formulate an interpolation-based FMM for the computation of the relativistic space-charge field. Different to the quasi-electrostatic model, our FMM is formulated in the lab-frame and can...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2023-10, Vol.291, p.108825, Article 108825 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fast multipole method (FMM) has received growing attention in the beam physics simulation. In this study, we formulate an interpolation-based FMM for the computation of the relativistic space-charge field. Different to the quasi-electrostatic model, our FMM is formulated in the lab-frame and can be applied without the assistance of the Lorentz transformation. In particular, we derive a modified admissibility condition which can effectively control the interpolation error of the proposed FMM. The algorithms and their GPU parallelization are discussed in detail. A package containing serial and GPU-parallelized solvers is implemented in the Julia programming language. The GPU-parallelized solver can reach a speedup of more than a hundred compared to the execution on a single CPU core. |
---|---|
ISSN: | 0010-4655 |
DOI: | 10.1016/j.cpc.2023.108825 |