GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm
We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum anne...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2022-09, Vol.278, p.108411, Article 108411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study large-scale applications using a GPU-accelerated version of the massively parallel Jülich universal quantum computer simulator (JUQCS–G). First, we benchmark JUWELS Booster, a GPU cluster with 3744 NVIDIA A100 Tensor Core GPUs. Then, we use JUQCS–G to study the relation between quantum annealing (QA) and the quantum approximate optimization algorithm (QAOA). We find that a very coarsely discretized version of QA, termed approximate quantum annealing (AQA), performs surprisingly well in comparison to the QAOA. It can either be used to initialize the QAOA, or to avoid the costly optimization procedure altogether. Furthermore, we study the scaling of the success probability when using AQA for problems with 30 to 40 qubits. We find that the case with the largest discretization error scales most favorably, surpassing the best result obtained from the QAOA. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2022.108411 |