OpenFOAM solver for thermal and chemical conversion in porous media
We present the porousGasificationFoam solver and libraries, developed in the open-source C++ code OpenFOAM, for the comprehensive simulation of the thermochemical conversion in porous media. The code porousGasificationFoam integrates gas flow through a porous media with the models of heterogeneous (...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2022-09, Vol.278, p.108407, Article 108407 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the porousGasificationFoam solver and libraries, developed in the open-source C++ code OpenFOAM, for the comprehensive simulation of the thermochemical conversion in porous media.
The code porousGasificationFoam integrates gas flow through a porous media with the models of heterogeneous (drying, gasification, pyrolysis, solid combustion, precipitation) and homogeneous (gas combustion) chemical reactions. Inside porous media transport equations are formulated applying the spatial averaging methodology. The mass and enthalpy transfer between solid and gas phases is suitable for systems out of the thermal equilibrium. The convection and radiation modes of the heat transfer are included for gas and solid phases, and the immersed boundary technique is applied for the porous media inside the computational domain.
We validate the elements of the model against a set of experimental and theoretical results. Amongst them, Thermogravimetric Analysis experiments of thermal conversions of two wooden particles: one of millimeter size the other of centimeter size. Simulations feature reaction schemes and physical parameters established in the literature. We show the influence of the porous media size on the gasification process. The millimeter particle remains uniform, while for the centimeter setup, the pyrolysis front is reproduced. The spatial patterns in physical conditions modify the course of chemical reactions and influence media composition and structure evolution. Another important example is a gasifier where we obtain a self-sustaining front propagation because of an exothermic heterogeneous reaction.
Program Title: porousGasificationFoam
CPC Library link to program files:https://doi.org/10.17632/s6sj9kgp69.1
Developer's repository link:https://github.com/pjzuk/porousGasificationFoam (foam-extend-4.1); https://github.com/btuznik/porousGasificationFoam (OpenFOAM 8)
Licensing provisions: GNU General Public Licence version 3
Programming language: C++
External routines/libraries: OpenFOAM 8, foam-extend-4.1
Nature of problem: The developed software is a solver and a set of libraries for simulating the thermal conversion in porous media, including drying, pyrolysis, gasification, and combustion. The model includes the flow of the reactive gas mixture and the transfer of mass and enthalpy between the gas and solid phases. The porous medium can change during the process. The model is transient and enables three-dimensional simulations.
Solution method:: The |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2022.108407 |