A Survey of PPG's Application in Authentication
Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential reme...
Gespeichert in:
Veröffentlicht in: | Computers & security 2023-12, Vol.135, p.103488, Article 103488 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential remedy to this problem. In particular, Photoplethysmogram (PPG) measures the change in blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals contain a wealth of individual cardiac information, researchers have begun to explore their potential in cyber security applications. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions. |
---|---|
ISSN: | 0167-4048 |
DOI: | 10.1016/j.cose.2023.103488 |