Parameter-adaptive reference governors with learned robust constraint-admissible sets

Reference governors (RGs) provide an effective method for ensuring safety via constraint enforcement in closed-loop nonlinear control systems. When the system parameters are uncertain but constant, robust formulations of RGs that consider only the worst-case effect may be overly conservative and exh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2023-04, Vol.133, p.105450, Article 105450
Hauptverfasser: Chakrabarty, Ankush, Berntorp, Karl, Di Cairano, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reference governors (RGs) provide an effective method for ensuring safety via constraint enforcement in closed-loop nonlinear control systems. When the system parameters are uncertain but constant, robust formulations of RGs that consider only the worst-case effect may be overly conservative and exhibit poor performance. This paper proposes a parameter-adaptive reference governor (PARG) architecture that is capable of generating safe trajectories in spite of parameter uncertainties, without being as conservative as robust RGs. The proposed approach employs machine learning on a combination of off-line simulations and on-line measurements to estimate parameter-robust constraint-admissible sets (PRCASs) that can be leveraged by the PARG. We illustrate the robust set learning and constraint enforcement qualities of the PARG using a two-dimensional electromagnetic actuator example, and further demonstrate the potential of the PARG on a vehicle case study for preventing rollover despite aggressive maneuvering.
ISSN:0967-0661
1873-6939
DOI:10.1016/j.conengprac.2023.105450