Motion control with optimal nonlinear damping: From theory to experiment

Optimal nonlinear damping control was recently introduced for the second-order SISO systems, showing some advantages over a classical PD feedback controller. This paper summarizes the main theoretical developments and properties of the optimal nonlinear damping controller and demonstrates, for the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2022-10, Vol.127, p.105310, Article 105310
1. Verfasser: Ruderman, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimal nonlinear damping control was recently introduced for the second-order SISO systems, showing some advantages over a classical PD feedback controller. This paper summarizes the main theoretical developments and properties of the optimal nonlinear damping controller and demonstrates, for the first time, its practical experimental evaluation. An extended analysis and application to more realistic (than solely the double-integrator) motion systems are also given in the theoretical part of the paper. As comparative linear feedback controller, a PD one is taken, with the single tunable gain and direct compensation of the plant time constant. The second, namely experimental, part of the paper includes the voice-coil drive system with relatively high level of the process and measurement noise, for which the standard linear model is first identified in frequency domain. The linear approximation by two-parameters model forms the basis for designing the PD reference controller, which fixed feedback gain is the same as for the optimal nonlinear damping control. A robust sliding-mode based differentiator is used in both controllers for a reliable velocity estimation required for the feedback. The reference PD and the proposed optimal nonlinear damping controller, both with the same single design parameter, are compared experimentally with respect to trajectory tracking and disturbance rejection.
ISSN:0967-0661
1873-6939
DOI:10.1016/j.conengprac.2022.105310