Regularized error-in-variable estimation for big data modeling and process analytics

This article addresses estimating the uncertainty in operational data by introducing a regularized modeling technique. Existing work (i) requires knowing the true dimension of the operational data, (ii) relies on a maximum likelihood estimation that is compromised by a stringent restriction for this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2022-04, Vol.121, p.105060, Article 105060
Hauptverfasser: Kruger, Uwe, Wang, Xun, Embrechts, Mark J., Almansoori, Ali, Hahn, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article addresses estimating the uncertainty in operational data by introducing a regularized modeling technique. Existing work (i) requires knowing the true dimension of the operational data, (ii) relies on a maximum likelihood estimation that is compromised by a stringent restriction for this true dimension and (iii) is computationally expensive. In contrast, the presented regularized error-in-variable technique (i) allows determining the true data dimension through hypothesis testing, (ii) is not limited by the restriction of existing methods, and (iii) has an objective function that can be solved efficiently. Based on a simulation example and the analysis of two industrial datasets, the paper highlights that the regularized estimation technique outperforms existing work and shows how to embed this technique within an advanced process analytics framework for advanced process control, optimization and general process diagnostics.
ISSN:0967-0661
1873-6939
DOI:10.1016/j.conengprac.2021.105060