Loop-shaping for reset control systems

The ever-growing demands on speed and precision from the precision motion industry have pushed control requirements to reach the limitations of linear control theory. Nonlinear controllers like reset provide a viable alternative since they can be easily integrated into the existing linear controller...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2021-06, Vol.111, p.104808, Article 104808
Hauptverfasser: Saikumar, Niranjan, Heinen, Kars, HosseinNia, S. Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ever-growing demands on speed and precision from the precision motion industry have pushed control requirements to reach the limitations of linear control theory. Nonlinear controllers like reset provide a viable alternative since they can be easily integrated into the existing linear controller structure and designed using industry-preferred loop-shaping techniques. However, currently, loop-shaping is achieved using the describing function (DF) and performance analysed using linear control sensitivity functions not applicable for reset control systems, resulting in a significant deviation between expected and practical results. This major bottleneck to the wider adaptation of reset control is overcome in this paper with two important contributions. First, an extension of frequency-domain tools for reset controllers in the form of higher-order sinusoidal-input describing functions (HOSIDFs) is presented, providing greater insight into their behaviour. Second, a novel method that uses the DF and HOSIDFs of the open-loop reset control system for the estimation of the closed-loop sensitivity functions is proposed, establishing for the first time — the relation between open-loop and closed-loop behaviour of reset control systems in the frequency domain. The accuracy of the proposed solution is verified in both simulation and practice on a precision positioning stage and these results are further analysed to obtain insights into the tuning considerations for reset controllers. •Describing function based analysis of reset controllers is not accurate.•Higher-order sinusoidal-input describing functions (HOSIDFs) provide a complete description of reset controllers in open loop.•HOSIDFs allow for developing novel sensitivity functions.•HOSIDF based sensitivity functions improve prediction accuracy compared to describing function based functions.•HOSIDF based method provides insights towards loop-shaping of reset control systems.
ISSN:0967-0661
1873-6939
DOI:10.1016/j.conengprac.2021.104808