Freeze-thaw resistance and service life prediction of fly ash incorporated ultra-high ductility magnesium phosphate cement-based composites

To develop ultra-high ductility magnesium phosphate cement-based composites (UHDMC) suitable for cold areas and fully utilize solid waste, the effects of fly ash (FA) substitution and freeze-thaw cycles on the mechanical properties and freeze-thaw resistance of UHDMC specimens were explored. The mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials 2024-10, Vol.449, p.138330, Article 138330
Hauptverfasser: Feng, Hu, Wang, Lei, Yu, Zhenyun, Guo, Aofei, Liang, Junhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop ultra-high ductility magnesium phosphate cement-based composites (UHDMC) suitable for cold areas and fully utilize solid waste, the effects of fly ash (FA) substitution and freeze-thaw cycles on the mechanical properties and freeze-thaw resistance of UHDMC specimens were explored. The mechanism of freeze-thaw damage was revealed by mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM). Freeze-thaw damage model for UHDMC was established to predict its service life. The results showed that, after 300 freeze-thaw cycles, the compressive strength retention rate of the UHDMC specimens with FA substitution from 10 % to 30 % was above 88.7 %, and the tensile strain maintained above 3.48 %, still presenting the characteristics of multi-cracking and strain hardening. Meanwhile, after 600 freeze-thaw cycles, the mass loss rate and the dynamic elastic modulus of UHMPC specimens with FA substitution from 10 % to 30 % were below 1.38 % and above 81.1 %, respectively. The mechanical properties were mainly related to the total porosity and macropores. The effect of the water solubility of prismatic struvite-K crystals and the secondary hydration production of filamentous struvite potassium crystals on the matrix presented well explanation for the excellent freeze-thaw resistance of UHDMC specimens with FA substitution from 10 % to 30 %. At last, a freeze-thaw damage model for UHDMC specimens with FA substitution below 30 % based on the Weibull probability distribution function was established, predicting that their service life was up to 232 years in the northeastern of China. •The UHDMC specimens with FA substitution from 10 % to 30 % met the requirement of 600 freeze-thaw cycles.•The increase of gel, transition and capillary pores was mainly attributed to the good freeze-thaw resistance.•Water solubility and its secondary hydration production of struvite crystals presented well explanation for freeze-thaw resistance.•Freeze-thaw damage model was established to predict its service life up to 232 years in northern China.
ISSN:0950-0618
DOI:10.1016/j.conbuildmat.2024.138330