Study on the effect of multi-factor compound action on long-term tensile performance of GFRP composite pipe and life prediction analysis

In this work, the glass fiber reinforced plastic (GFRP) composite pipes used as sewerage pipes in oil and gas field environments were studied. The accelerated aging experiments were carried out under the simulated environments of three typical oil field media which including circulating air, simulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2024-11, Vol.348, p.118478, Article 118478
Hauptverfasser: Liao, Dandan, Gu, Tan, Yan, Jing, Yu, Zhiming, Dou, Jingjie, Hu, Min, Zhao, Fei, Liu, Jie, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the glass fiber reinforced plastic (GFRP) composite pipes used as sewerage pipes in oil and gas field environments were studied. The accelerated aging experiments were carried out under the simulated environments of three typical oil field media which including circulating air, simulated produced water and standard simulated oil. Scanning electron microscopy (SEM) was adopted to observe the microscopic morphology of the aged GFRP tubes under the three conditions. The microstructural characteristics of the aged tubes and the evolution process of internal defects were also analyzed and evaluated in combination with micro-CT technology. The attenuation pattern of the hoop tensile strength of the aged pipes was measured via the separation disk method, and the service life prediction was carried out based on the Arrhenius theory with the hoop strength as the life index. The results show that the accumulation of aging time and continuous heat input will aggravate the expansion of internal pores and cause the aggregation of small-volume defects into large-volume defects. Especially in the simulated oil environment, which has the highest sensitivity to defects. The maximum porosity reaching 1.5 % and the maximum volume of individual defects exceeding 106 μm3 after aging for 4000 h at 95 °C. The thermal aging process under the three environmental conditions had similar aging characteristics, and interfacial damage of the glass fibers was observed in all of them. The variability of hydrothermal aging is related to the hydrolytic behavior of the glass fibers, which is associated with the progressive dissolution damage of the SiO2 network in the glass fibers, as well as the breaking of silane bonds. Thus, the hydrothermal environment had the most significant effect on the hoop tensile strength decay. Ultimately, 75 % strength retention was taken as the end-of-life indicator. The predicted service life based on the Arrhenius model for the three environments of thermo-oxygen, hydrothermal and simulated oil were 23.5, 23.1 and 28.5 years at 20 °C, and 12.2, 4.9 and 10.3 years at 40 °C, respectively.
ISSN:0263-8223
DOI:10.1016/j.compstruct.2024.118478