3D meso-scale modelling of tensile and compressive fracture behaviour of steel fibre reinforced concrete

This paper presents a novel meso-scale modelling framework to investigate the fracture process in steel fibre reinforced concrete (SFRC) under uniaxial tension and compression considering its 3D mesostructural characteristics, including different types of fibres, realistic shaped aggregates, mortar,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2022-07, Vol.291, p.115690, Article 115690
Hauptverfasser: Naderi, Sadjad, Zhang, Mingzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel meso-scale modelling framework to investigate the fracture process in steel fibre reinforced concrete (SFRC) under uniaxial tension and compression considering its 3D mesostructural characteristics, including different types of fibres, realistic shaped aggregates, mortar, interfacial transition zone and voids. Based on a hybrid damage model consisting of cohesive element method and damage plasticity method, a cost-effective finite element approach was proposed to simulate the fracture behaviour of SFRC in terms of stress–strain response, energy dissipation and crack morphology. The results indicated that under given conditions, the straight and hooked-end fibres improved the compressive damage tolerances of concrete over 11.5% while the spiral fibres had a negligible effect of 2.6%. The tensile macro-damage level index introduced was reduced over 15% by all fibres. Compared to straight fibres, the higher anchoring capacity of spiral fibres reduced the reinforcement performance while hooked-end fibres did not exhibit a significant influence.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2022.115690