On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel

In this paper, wave propagation analysis of multi-hybrid nanocomposite (MHC) reinforced doubly curved panel embedded in the viscoelastic foundation is carried out. Higher-order shear deformable theory (HSDT) is utilized to express the displacement kinematics. The rule of mixture and modified Halpin–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2021-01, Vol.255, p.112947, Article 112947
Hauptverfasser: Al-Furjan, M.S.H., Oyarhossein, Mohammad Amin, Habibi, Mostafa, Safarpour, Hamed, Won Jung, Dong, Tounsi, Abdelouahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, wave propagation analysis of multi-hybrid nanocomposite (MHC) reinforced doubly curved panel embedded in the viscoelastic foundation is carried out. Higher-order shear deformable theory (HSDT) is utilized to express the displacement kinematics. The rule of mixture and modified Halpin–Tsai model are engaged to provide the effective material constant of the MHC reinforced doubly curved panel. By employing Hamilton’s principle, the governing equations of the structure are derived and solved with the aid of an analytical method. Afterward, a parametric study is carried out to investigate the effects of the viscoelastic foundation, carbon nanotubes’ (CNTs’) weight fraction, various MHC patterns, radius to total thickness ratio, and carbon fibers angel on the phase velocity of the MHC reinforced doubly curved panel in the viscoelastic medium. The results show that, by considering the viscous parameter, the relation between wavenumber and phase velocity changes from exponential increase to logarithmic boost. A useful suggestion of this research is that the effects of fiber angel and damping parameter on the phase velocity of a doubly curved panel are hardly dependent on the wavenumber. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2020.112947