Bio-inspired integrated pneumatic actuation for compliant fiber-reinforced plastics
Compliant mechanisms of fiber-reinforced plastic (FRP) have been developed to reduce the mechanical complexity of kinetic systems. In a further step, pneumatic actuation was integrated into the set-up of the FRP, offering lightweight, slender, and inconspicuous actuation. Inflation of an integrated...
Gespeichert in:
Veröffentlicht in: | Composite structures 2020-02, Vol.233, p.111558, Article 111558 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compliant mechanisms of fiber-reinforced plastic (FRP) have been developed to reduce the mechanical complexity of kinetic systems. In a further step, pneumatic actuation was integrated into the set-up of the FRP, offering lightweight, slender, and inconspicuous actuation. Inflation of an integrated cushion causes rotation through the asymmetric material lay-up. Inspiration from the ultrastructure of pressurized veins in arthropod wings has led to the development of a thin layer of elastomer surrounding this pneumatic cushion to avoid delamination. T-peel tests revealed that the elastomer forms a higher adhesion to itself than to glass-fiber-reinforced plastic (GFRP) layers with an epoxy matrix. The angle-pressure relationship for specific GFRP samples with a defined compliant hinge zone was investigated physically and numerically, showing good consistency between the two. Further, a mathematical model, taking into account the bending stiffness of the cushion-surrounding FRP layers, was developed, and a parametric study was conducted on the actuation angles. |
---|---|
ISSN: | 0263-8223 |
DOI: | 10.1016/j.compstruct.2019.111558 |