Multi-objective optimization of composite angle grid plates for maximum buckling load and minimum weight using genetic algorithms and neural networks

The present work describes an optimization process based on the ε-constraint method to find an optimum design to maximize the critical buckling load and minimize the structural weight of an angle grid plate. A comprehensive geometrical model is considered including all geometrical design variables o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2019-12, Vol.229, p.111450, Article 111450
Hauptverfasser: Ehsani, Amir, Dalir, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present work describes an optimization process based on the ε-constraint method to find an optimum design to maximize the critical buckling load and minimize the structural weight of an angle grid plate. A comprehensive geometrical model is considered including all geometrical design variables of the grid. In order to achieve a precise and effective approximation of the buckling load, an artificial neural network (ANN) is employed. Training data for ANN is obtained by the Mindlin plate theory as well as the Ritz method. The ANN is combined with genetic algorithms (GA) to find the optimized design variables for an angle grid structure. The results provide a wide range of geometrical data for designers to choose the maximum buckling load at the minimum structural weight.
ISSN:0263-8223
DOI:10.1016/j.compstruct.2019.111450