Experimental investigation of frictional behavior in a filament winding process for joining fiber-reinforced profiles
Filament winding with a rotating ring allows the joining of hollow, fiber-reinforced profiles. To avoid fiber slippage and to be able to produce wound connections, the curvature of the winding path as well as the friction between mandrel and fibers must be considered. In this paper, the frictional b...
Gespeichert in:
Veröffentlicht in: | Composite structures 2019-12, Vol.229, p.111436, Article 111436 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Filament winding with a rotating ring allows the joining of hollow, fiber-reinforced profiles. To avoid fiber slippage and to be able to produce wound connections, the curvature of the winding path as well as the friction between mandrel and fibers must be considered. In this paper, the frictional behavior of dry carbon fiber tows is investigated in the context of filament winding for joining profiles. Friction experiments using a sled and filament-winding experiments are performed in order to examine the interrelationship between both setups. Furthermore, the influence of parameters, such as fiber orientation and contact surface, are analyzed. Regarding the frictional behavior of dry carbon fibers, it is found that the perpendicular slippage of the tow is governed by different mechanisms. Therefore, two different modes of slippage can be distinguished, depending on whether the tow’s limit of adhesion is dominated by the friction between the mandrel surface and the bottom layer of filaments, or by the coherence of filaments within the tow. |
---|---|
ISSN: | 0263-8223 |
DOI: | 10.1016/j.compstruct.2019.111436 |