Elastoplastic thermal buckling of functionally graded material beams

Elastoplastic thermal buckling characteristics of ceramic-metal functionally graded material (FGM) beams subjected to transversely non-uniform temperature rise are investigated by symplectic method in Hamiltonian system. Based on TTO model, the linear hybrid hardening elastoplastic model is used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2019-09, Vol.224, p.111014, Article 111014
Hauptverfasser: Zhang, Jinghua, Chen, Like, Lv, Yali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elastoplastic thermal buckling characteristics of ceramic-metal functionally graded material (FGM) beams subjected to transversely non-uniform temperature rise are investigated by symplectic method in Hamiltonian system. Based on TTO model, the linear hybrid hardening elastoplastic model is used to simulate the elastoplastic material properties and establish thermal elastoplastic constitutive equations of FGM beams. Then, the canonical equations are established to transform critical loads and buckling modes into symplectic eigenvalues and eigensolutions in symplectic space. The main contributions of this study are that complete buckling mode space and critical thermal axial forces for elastoplastic thermal buckling of the FGM beams are obtained by analytical solutions; meanwhile, buckling temperatures and elastoplastic interfaces of the bucked FGM beams are obtained by inverse solutions. Numerical examples of buckling behaviors varying with thermal load, slenderness ratio and power law index are presented. The effects of elastoplastic material properties on critical temperatures and plastic zone are analyzed and discussed.
ISSN:0263-8223
1879-1085
DOI:10.1016/j.compstruct.2019.111014