Predicting mechanical and electrical failure of nanowire networks in flexible transparent electrodes

Flexible transparent electrodes employing metal nanowires (NWs) find extensive use in various applications such as optoelectronic devices, solar cells, light-emitting diodes, and transparent heaters. NW networks in metal electrodes can withstand mechanical deformations and conduct electricity but ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2024-01, Vol.245, p.110304, Article 110304
Hauptverfasser: Grazioli, Davide, Gangi, Gabriele, Nicola, Lucia, Simone, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexible transparent electrodes employing metal nanowires (NWs) find extensive use in various applications such as optoelectronic devices, solar cells, light-emitting diodes, and transparent heaters. NW networks in metal electrodes can withstand mechanical deformations and conduct electricity but are susceptible to localized damage caused by mechanical stress and current density concentration. This localized damage ultimately results in electrode failure. Our study aims to track locally induced damage from both mechanical and electrical sources and assess their collective influence on electrode performance until failure occurs. To this end, we create two-dimensional digital samples that represent the NW networks, transform them into beam networks and equivalent resistor networks, and perform finite element simulations of the mechanical and electrical network responses while varying the NW content. Our simulations reveal crack-like patterns in the distribution of damaged elements at network failure that depend on the process inducing the damage. While our results suggest that the impact of electrically induced damage on overall network stability is more significant than that of mechanically induced damage, the latter must not be ignored. [Display omitted]
ISSN:0266-3538
DOI:10.1016/j.compscitech.2023.110304