In-suit cemented strategy enables intumescent flame retardant transition from hyper-hydrophilic to hydrophobic and aggregation flame retardant effect simultaneously in polypropylene

To meet the stringent requirements of specific high-end manufacturing applications involving flame retardant polypropylene (PP) materials, it's imperative to overcome the inherent superhydrophilicity of intumescent flame retardants (IFR) while simultaneously further enhancing flame retardant ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2024-12, Vol.287, p.111874, Article 111874
Hauptverfasser: Li, Shanzhe, Tang, Wei, Qian, Lijun, Wang, Jingyu, Wu, Xiao, Qiu, Yong, Xi, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To meet the stringent requirements of specific high-end manufacturing applications involving flame retardant polypropylene (PP) materials, it's imperative to overcome the inherent superhydrophilicity of intumescent flame retardants (IFR) while simultaneously further enhancing flame retardant efficiency. In addressing this challenge, novel in-situ cemented MVC-IFR microparticles characterized by a microparticle-aggregation effect and hydrophobic structure were successfully synthesized. The micro-aggregated MVC-IFR particles not only bolstered the hydrophobicity and charring flame retardancy of PP composites compared to conventional IFR but also exhibited superior resistance to water erosion. The water contact angle (WCA) of 3MVC-22IFR reached an impressive 159°, whereas the WCA of IFR stood at 0°. Moreover, when MVC-IFR and IFR were incorporated into PP, 3MVC-22IFR/PP displayed a WCA of 108° which was a hydrophobic composite, while 25IFR/PP exhibited a WCA of 81° which was a hydrophilic composite. Notably, the hydrophobic MVC-IFR showcased greater resistance to water exposure than hydrophilic IFR, thereby maintaining its flame retardant efficacy in practical applications. Furthermore, MVC-IFR microparticles with aggregation of acid, carbon, and gas sources, facilitated the charring reactions of different components, thereby enhancing its charring flame retardant effect in PP. Remarkably, 1MVC-24/PP not only attained a UL 94V-0 rating but also achieved a glow wire flammability index (GWFI) of >960 °C, a glow wire ignition temperature (GWIT) of 850 °C, and an LOI value of 28.7 %. In contrast, 25IFR/PP failed to secure a UL 94 rating and exhibited lower GWIT and LOI values. Crucially, the peak heat release rate and total smoke release of 1MVC-24IFR/PP were markedly reduced by 76 % and 41 %, respectively, compared with those of neat PP. In summary, this study presented a novel design concept and rules for flame retardant morphology, to find a way for the development of polyolefin materials boasting both high hydrophobicity and superior flame retardancy. [Display omitted] •In-suit cemented MVC-IFR microparticles were fabricated.•Cemented method transformed from hyper-hydrophilic of IFR to hydrophobic.•MVC-IFR exhibited microparticle aggregation flame retardant effect.•The water resistance property of PP was enhanced by MVC-IFR.
ISSN:1359-8368
DOI:10.1016/j.compositesb.2024.111874