Multi-functionalization and recycling of basalt fibre/polypropylene laminated composites based on mixed plain-woven fabric and related interfacial decorations
The development of laminated composites of thermoplastic polypropylene (PP)/continuous basalt fabric is limited by poor mutual infiltration and weak interfacial interactions between the matrix and fabric, as well as the intrinsic flammability and susceptibility of the PP matrix to ultraviolet (UV) a...
Gespeichert in:
Veröffentlicht in: | Composites. Part B, Engineering Engineering, 2024-08, Vol.283, p.111691, Article 111691 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of laminated composites of thermoplastic polypropylene (PP)/continuous basalt fabric is limited by poor mutual infiltration and weak interfacial interactions between the matrix and fabric, as well as the intrinsic flammability and susceptibility of the PP matrix to ultraviolet (UV) aging. To solve the above shortcomings in a high-efficiency manner, a multi-functional transition layer was constructed between the PP matrix and long basalt fibres (LBFs) based on a hybrid plain-woven fabric composed of LBFs weft yarns and PP warp yarns. After hot-laminating these hybrid plain-woven prepregs, the mechanical performance of the resultant laminates was optimised and strengthened by selecting the compositions of the multi-functional transition layers (comprising flexible alkyl glycidyl ether chains, various rigid inorganic nanoparticles, or a flexible-rigid hybrid layer). Among these different transition layers, the interface between the LBFs-g-MWCNTs-OH and the PP matrix presented better mutual infiltration due to the lower interfacial energy, stronger mechanical engagement effect derived from the rougher fibre surface, and higher interfacial modulus. Therefore, the fewer structural defects and more effective transfer of the applied load at the interface caused the tensile strength/modulus and flexural strength/modulus of the related hybrid weaving laminates (HWLs) to reach 278.1 MPa/31.8 GPa and 264.2 MPa/12.4 GPa, respectively. The rigid interfaces formed by the deposited nanoparticles also accelerated heat transfer from the matrix to the fibre and the absorption of UV-light inside composite, then improving the flame-retardancy and anti-UV aging performances of the corresponding HWLs. Finally, recyclability evaluations indicated that the waste LBFs-g-SiO2/PP HWLs can be used as anti-UV aging and flame-retardant agents to fabricate new modified PP pellets with multiple functions.
[Display omitted] |
---|---|
ISSN: | 1359-8368 |
DOI: | 10.1016/j.compositesb.2024.111691 |