Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber

To effectively utilize the unique properties of layered transition metal dichalcogenide and the attractive morphology of hierarchical flower for the attenuation of electromagnetic wave, herein, high-efficiency flower-like core@shell structure FeSe2@MoSe2 nanocomposites were firstly synthesized throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2021-10, Vol.222, p.109067, Article 109067
Hauptverfasser: Zhang, Jingjing, Li, Zihan, Qi, Xiaosi, Gong, Xiu, Xie, Ren, Deng, Chaoyong, Zhong, Wei, Du, Youwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To effectively utilize the unique properties of layered transition metal dichalcogenide and the attractive morphology of hierarchical flower for the attenuation of electromagnetic wave, herein, high-efficiency flower-like core@shell structure FeSe2@MoSe2 nanocomposites were firstly synthesized through a simple in situ hydrothermal reaction on the surfaces of Fe3O4 nanoparticles with the adequate amounts of Mo and Se sources. The obtained results indicated that the designed flower-like core@shell structure FeSe2@MoSe2 nanocomposites with the filler loadings of 30 wt% and 40 wt% presented the optimal reflection loss (RLopt) value of −59.87 dB at 11 GHz with a matching thickness of 3.10 mm and −60.53 dB at 13.52 GHz with a matching thickness of 2.47 mm. And their corresponding effective frequency bandwidth (fb) values were up to 10.0 GHz with a thickness of 3.66 mm and 6.00 GHz with a thickness of 2.12 mm, respectively. It was worth pointing out that the as-prepared flower-like FeSe2@MoSe2 nanocomposite with filler loading of 30 wt% could simultaneously present very extraordinary electromagnetic wave absorption capabilities and broad absorption bandwidth with the very thin matching thicknesses, which was desirable for high-efficient microwave absorbers. Therefore, a simple and effective strategy was proposed to produce flower-like core@shell structure MoSe2-based nanocomposites, which could be applied as the very desirable candidates for high-performance microwave absorption materials. [Display omitted] •Flower-like FeSe2@MoSe2 nanocomposites as MAs were not reported previously.•Core@shell structure FeSe2@MoSe2 nanocomposites were synthesized through a simple hydrothermal reaction.•Flower-like FeSe2@MoSe2 displayed very extraordinary comprehensive microwave absorption properties.
ISSN:1359-8368
1879-1069
DOI:10.1016/j.compositesb.2021.109067