Towards novel high-performance bio-composites: Polybenzoxazine-based matrix reinforced with Manicaria saccifera fabrics
Due to the worldwide awareness about environmental issues, there is an increasing demand for the development of low cost and ecofriendly materials. In this work, natural fabrics of Manicaria saccifera (MS), a palm tree from the Americas, were used to prepare polybenzoxazine-based bio-composites. The...
Gespeichert in:
Veröffentlicht in: | Composites. Part B, Engineering Engineering, 2020-08, Vol.194, p.108060, Article 108060 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the worldwide awareness about environmental issues, there is an increasing demand for the development of low cost and ecofriendly materials. In this work, natural fabrics of Manicaria saccifera (MS), a palm tree from the Americas, were used to prepare polybenzoxazine-based bio-composites. These materials were initially developed as bidirectional alkaline-treated fabrics impregnated with benzoxazine resins (prepregs) and then cured in a hot-press. The good compatibility between matrix and reinforcement was confirmed by scanning electron microscopy (SEM), which showed that alkaline treatment led to a more homogeneous fabric surface, achieving improved interfacial interaction. The dynamic mechanical analysis revealed elevated glass transition temperatures (>115 °C) and crosslinking degrees. The results of tensile and flexural tests showed high elastic modulus, with values around 2 GPa. Thermal analyses indicate the great flame retardant performance of these bio-based materials due to their high char yields and LOI values. Therefore, this study suggests the elevate potential of these highly bio-based composites, comprising more than 60% of natural matter, to be used in high-performance applications, especially where flame-retardancy is required, like construction, aerospace or automotive industries. |
---|---|
ISSN: | 1359-8368 1879-1069 |
DOI: | 10.1016/j.compositesb.2020.108060 |