Copper oxide decorated one-dimensional mineral nanorods: Construction of strengthened gas-phase and condensed-phase coupled intumescent flame retardant

Polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) features superior mechanical properties but suffers from high flammability, presenting a grand challenge in enhancing its flame retardancy with halogen-free additives. Herein, we developed an efficient flame-retardant system (BH/CuATP) by incorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2024-10, Vol.185, p.108373, Article 108373
Hauptverfasser: Gao, Zeyang, Zhu, Yu, Liu, Xiaoyong, Yuan, Bihe, Shen, Ranzhao, Li, Kailin, Yin, Yao, Zhang, Zhipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) features superior mechanical properties but suffers from high flammability, presenting a grand challenge in enhancing its flame retardancy with halogen-free additives. Herein, we developed an efficient flame-retardant system (BH/CuATP) by incorporating phosphazene additive (HP), copper oxide modified attapulgite (CuATP) and bisphenol A bis (diphenyl phosphate) (BDP). This system achieves a UL-94V-0 rating without melt-dripping and leads to reductions in the peak heat release rate (43.1 %), total heat release (29.8 %) and total smoke production (5.7 %). The strength effect of CuATP in both gas-phase and condensed-phase significantly contributes to its enhanced fire safety. Additionally, the mechanical properties of PC/ABS/B1H1/CuATP1 are improved due to the rod-like CuATP, showing enhanced comprehensive properties superior to other reported systems. This work presents valuable insights into the effectiveness of mineral-strength intumescent flame retardancy for PC/ABS, offering practical guidance for the development of high-performance PC/ABS composites.
ISSN:1359-835X
DOI:10.1016/j.compositesa.2024.108373