Optimizing the manufacturing technology of high-strength fiber reinforced composites based on aluminophosphates
Phosphate copolymers show promise for composite materials, but using polymer binders for structural composites is limited by underdeveloped manufacturing processes, resulting in low strength. This work optimized the technological process for obtaining carbon fiber reinforced plastics (CFRPs) based o...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2024-10, Vol.185, p.108310, Article 108310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphate copolymers show promise for composite materials, but using polymer binders for structural composites is limited by underdeveloped manufacturing processes, resulting in low strength. This work optimized the technological process for obtaining carbon fiber reinforced plastics (CFRPs) based on aluminophosphate (AP), aluminoborophosphate (ABP), and aluminochromophosphate (ACP) binders. Carbon fiber impregnation regimes were optimized considering inorganic binders’ rheological properties, density, surface tension, and wettability. A rotary rheometer evaluated phosphate binder tack to optimize molding modes. The compaction dependency of woven phosphate binder prepregs on pressure was evaluated, selecting optimal CFRP molding modes. TGA-DSC analysis optimized phosphate binder drying and curing processes. CFRP samples with 55–58 % volume AP, ACP, and ABP binders were obtained by vacuum molding, exhibiting high tensile, flexural strength and modulus. High heat resistance was shown by dynamic mechanical analysis, and thermal shock resistance evaluated by residual flexural strength change. |
---|---|
ISSN: | 1359-835X |
DOI: | 10.1016/j.compositesa.2024.108310 |