Influence of fibre steering on the bearing performance of bolted joints in 3D printed pseudo-woven CFRP composites

Aiming to improve the bearing performance of bolted joints in carbon fibre reinforced polymer (CFRP) composites, this study investigates the impact of steered fibre paths around the hole edge within pseudo-woven (interlaced) composites that are manufactured by 3D printing. The influence of fibre ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2024-06, Vol.181, p.108150, Article 108150
Hauptverfasser: Li, Aonan, Zhang, Haoqi, Yang, Dongmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming to improve the bearing performance of bolted joints in carbon fibre reinforced polymer (CFRP) composites, this study investigates the impact of steered fibre paths around the hole edge within pseudo-woven (interlaced) composites that are manufactured by 3D printing. The influence of fibre steering on the crack initiation and propagation was examined through double-lap bearing tests performed on four distinct cases. Parallel to the comprehensive experimental study, digital image correlation (DIC) and X-ray computed microtomography (micro-CT) scans were performed to aid in understanding and identifying the various damage mechanisms in each specimen type. Results revealed that different patterns provided varying bearing abilities, with an employed pattern improving the initial bearing strength, initial fracture energy and ultimate fracture energy of the 3D printed pseudo-woven composite by 23.5%, 363.7% and 29.6%, respectively. Consequently, fibre steering in composites is found to be a promising method to tailor the bearing behaviour of bolted joints as required.
ISSN:1359-835X
DOI:10.1016/j.compositesa.2024.108150